

Internxt
Welcome To A New Internet.

September 2017

1

Table of contents
Abstract ... 2

Introduction .. 2

Why ... 3

What .. 4

Websites and Applications .. 4

Secure Massive Scale Object Storage (dCDN) ... 4

Smartphone storage .. 5

Internxt Serverless Framework solution .. 5

Control Tower application ... 6

User support .. 6

How ... 7

Internxt network ... 7

Node organization ... 8

Blockchain Service Provisioning ... 10

Deployment and Configuration Management ... 11

Identity and Payment Management .. 12

Container Application Platform ... 13

Distributed Cache .. 13

Decentralized Serverless Computing ... 14

Decentralized Content Delivery Network .. 15

Decentralized DNS ... 16

Decentralized Service Discovery .. 16

Gossip-Style Failure Detection... 17

Decentralized Network Coordinate System .. 18

Node Reputation and Security System .. 18

Market position ... 20

Token ... 21

Initial Coin Offering ... 21

Post ICO budget allocation .. 22

References ... 22

2

Abstract
There is a growing demand for more aspects of the modern internet to be decentralized. Though internet

applications are built on top of protocols like TCP/IP and HTTP, a large portion of the internet stack remains

centralized. Much of the desire for more decentralized computing systems comes from concerns regarding

mass surveillance over the web and security of the files on the cloud. At Internxt we are helping shape a

new, more secure, private and efficient internet. Using the most fundamental infrastructure behind the

internet and with the use of Blockchain and decentralized technology, we strive to create a better internet

than the one that is currently available. We believe that right now the cloud is relatively easy to access by

hackers trying to retrieve someone's files. Additionally, we believe that Governments and Corporations

have too much say over people. Although there needs to be regulation to avoid unethical and illegal

activities, as of now, control over people is excessive. Overall, we believe it’s time for a better internet. In

the following sections, we explain more about our work, and give details about what and how it will be

completed. Welcome To A New Internet. Welcome to Internxt.

Introduction
Internxt is a Peer-To-Peer (P2P) cloud computing network that allows users from all over the globe to

cooperate in the creation of a decentralized internet. Users can sell the resources of their machines to

those looking to host their data in a more private, secure and efficient way. Internxt's cloud platform will

not only offer a superior technology to the one of traditional cloud services, but it will also strive to be

competitive in terms of price and user experience. Internxt strives to make an intuitive technology that's

as user friendly as the one from already existing top-tier services. Internxt wants to make sure this new

internet is accessible by everyone, regardless of their knowledge, a great focus will be put on providing a

seamless transition from traditional services to Internxt, without compromising on features. Distributed

Files, Apps and Websites that make sense. Internxt is registered in C/ San Vicente Mártir 85, 46007,

Valencia, Spain, as Internxt Universal Technologies SLU (B98936354).

3

Why
There are many online industries where decentralized computing systems are uprooting existing

businesses. With the rise Bitcoin and its underlying technology, industries like e-commerce or file storage

amongst many more, are being disrupted by shifting to more decentralized models. Blockchain technology

enables many of such applications to be decentralized. P2P systems differ from other distributed systems

in enabling the user network to function without the need for an entity monitoring them. In pure P2P

architectures, there are no centralized services or control mechanisms dictating the actions of other nodes.

Each user decides with how many computing resources he/she will contribute to the network, as well as

when and for how long. The architecture is designed to handle large numbers of nodes joining or leaving

the network at the same time. In addition, these systems emphasize equality and balance the load across

nodes. This flexibility, self-determination and low participation cost encourages a much larger number of

participants, which, in turn, greatly increases the number and value of the services provided by the system

to all. We plan to make use of such architecture and create a robust network that will be the foundation

stone of our technology. Everything ran on Internxt’s network will be built using P2P technology. By

spreading the files over the network and removing the central points of failure we remove data

centralization and get enhanced security, which is a big flaw of cloud computing that is present today.

A major issue with existing cloud platforms is security and data centralization. In fact, cloud computing is a

computing paradigm, an abstraction where data and services are accessible all over the network to

authorized users and processes. Abstraction of computing away from the physical host entails a loss of

control of corporate data and loss of visibility into where the data lives and who has access to it. Another

dimension to cloud computing with very serious implications for security is the deployment model: who

owns the infrastructure and how is it accessed. A Private cloud refers to a collection of resources used by

a single organization. This is typically owned and managed by the organization itself, and hence in practical

terms is little different than any other data owned and managed by that enterprise. A Public cloud refers

to resources accessible by anyone usually over the public internet, managed and owned by a third party. A

third category, Hybrid cloud, refers to a combination of private and public clouds along with the connecting

fabric between the two. Our cloud brings a new and revolutionary solution into this. The data is spread on

public network ran by users, but all the files are encrypted before being sent out. There are no single points

for the hackers to attack, it is very hard for someone to grab a hold of files, and even if they do get them,

they cannot use them without the private key held by user. We want to fight this security and privacy issues

the current internet is facing with the development of Internxt.

4

What

Websites and Applications
We want to develop a decentralized solution through which users can create and browse any kind of

decentralized application, static and dynamic website. Decentralized applications include any application

that is currently built on Java, php etc. Decentralized apps and websites would be built with OpenShift

technology, and it would include all the languages supported by default in OpenShift, although we would

add more languages as we develop the technology. Decentralized websites would be able to be created via

SFTP and SSH, and browsable from any Web browser, through http protocol. Combining industry standard

technologies with powerful automation features would improve both the time from idea to having the

infrastructure ready for either staging or going directly to production. Our decentralized web and

application hosting would be much more secure than other solutions, thanks to the distribution of files.

Users would be able to deploy and run websites and applications on computing resources running on novel

P2P Grid application virtualization. Websites and Apps would be completely distributed, which would make

these much more secure than traditional centralized services.

Secure Massive Scale Object Storage (dCDN)
The concept of object storage was introduced in the early 1990’s by the research community. Since then it

has greatly matured. An object is defined as data (typically a file) along with all its metadata, all bundled up

as an object. This object is given an ID that is typically calculated from the content of that object (both file

and metadata) itself. An object is always retrieved by an application by presenting the object ID to object

storage. Unlike files and file systems, objects are stored in a flat structure. You have a pool of objects, and

you simply ask for a given object by presenting its object ID. Objects may be local or geographically

separated, but because they are in a flat address space, they are retrieved the same way. An object is not

limited to any type or amount of metadata.

Internxt will enable the creation of P2P self-managed, shared and secure storage for storage networks. This

moves lower-level functionalities such as space management into the storage device itself, accessing the

device through a standard object interface. In an object store environment space is allocated by the object

store and not by the higher-level software such as a file system. Users of an object store, e.g., the file

system, operate on data by performing operations such as creating an object, reading/writing at a logical

location in the object, and deleting the object. In addition, all operations carry a credential, and it is the

responsibility of the object store to validate that the user’s request carries a valid credential. This per-object

credential allows the storage to enforce different access rights for different portions of a volume on an

object granularity. Object storage is ideal for solving the increasing problems of data growth. As more and

more data is generated, storage systems must grow at the same pace. Another advantage to object storage

its responsiveness to the need for resiliency while mitigating costs. Objects remain protected by storing

multiple copies of data over a distributed system; if one or more nodes fail, the data can still be made

available, in most cases, without the application or the end user ever being impacted.

5

Internxt would run an algorithm to ensure that only legal files are being hosted on the network. Unlike

traditional providers, Internxt is private and does not make any use of the user information. In the

decentralized file hosting solution, Internxt would run scans to ensure that these securely and privately

hosted files do not contain any illegal activity.

Smartphone storage
Internxt would offer two different solutions directly related to how smartphones (IOS and Android) store

user data. The first of the two technologies is aimed for the end-customer. We will integrate a mobile

application which will let the user backup part of its data in our decentralized infrastructure, with the aim

of hosting it more securely than having it locally, and allowing the user to save up space in the smartphone.

An example could be photos stored in the phone itself or on services like Google Photos, or game data that

is internally stored.

The second smartphone solution residing on Internxt’s platform would be oriented towards developers.

These will be able to use a service like Parse (rapid development oriented services for easily storing mobile

application data), but on a decentralized manner. This would allow developers to host part of their mobile

application data on a more private and secure cloud.

Internxt Serverless Framework solution
Serverless was first used to describe applications that significantly or fully depend on 3rd party applications

/ services (in the cloud) to manage server-side logic and state. These are typically rich client applications

(single page web apps, or mobile apps) that use the vast ecosystem of cloud accessible databases (Parse,

Firebase), authentication services (Auth0, AWS Cognito) etc. These types of services have been previously

described as ‘(Mobile) Backend as a Service’. Serverless could also be defined as applications where some

amount of server-side logic is still written by the application developer but unlike traditional architectures

is ran in stateless compute containers that are event-triggered, ephemeral (may only last for one

invocation), and fully managed by a 3rd party. With Internxt, the user will be able to deploy a website,

mobile or IoT application directly to Internxt, and the whole infrastructure will entirely be provided by us.

This offers a powerful new way of developing/running applications as micro or nano services.

The Vulnerability Scanner (VS) is our threat detection component. When users deploy new kubernetes

clusters, they register the clusters with the Vulnerability Scanner and install scanner agents in the clusters.

When the scanner detects a threat, it posts a notification to the users’ registered OpenWhisk action which

will determine the appropriate actions to take to mitigate the threat. The notification contains the identity

of the container pods impacted by the threat. The OpenWhisk policy action invokes the appropriate

Kubernetes API extension which will relay the operation to the Security Enforcement Operator (SEO).

6

Control Tower application
Another key concept about our platform is the “Control Tower” app that will allow users to monitor and

control everything related to our platform. It will give users a clear overview of the resources that they are

hosting in the Internxt network. We will also create a web interface, followed by smartphone and computer

applications. Additionally, it will give users an overview of the number of tokens they have, and they will

see the payments that are pending both to you for the resources they are providing, and payments pending

for resources requested by them. This will also allow to overview and control the applications that are being

hosted by users. There will be developer API bundled with this, that will allow easy integration with other

supported products and platforms.

User support
Due to the core importance of providing a unique user experience, our decentralized cloud services will

provide 24/7 support to our users, apart from a seamless easy-to-use interface. Although we plan to

integrate an AI chatbot throughout all our environment, we also plan to introduce 24/7 live chat support

with specialized agents for deeper user concerns and 24/7 phone support for any matters.

Additionally, we plan to create a decentralized network of support where users with technical background

could provide their knowledge at the disposal of users who using our platform who would need support.

We would use Internxt’s token to pay for their services. Reputation system would also be created, which

would help improve the overall performance of the platform.

7

How

Internxt network
Historically, the state of computing has gone through a series of platforms and environmental changes.

Distributed computing holds great assurance for using computer systems effectively. As a result,

supercomputer providers and datacenters have changed from providing high performance floating point

computing resources to concurrently servicing a huge number of requests from billions of users. A

distributed computing system uses multiple computers to solve large-scale problems over the internet. It

becomes data-intensive and network-centric. The applications of distributed computing have become

increasingly wide-spread. In distributed computing, the main stress is on the large-scale resource sharing

and always goes for the best performance.

Distributed systems can be considered conventional networks of independent computers. They have

multiple system images, as each node runs its own operating system, and the individual machines in a

distributed system could be, for example, combinations of Massively Parallel Processors (MPPs), Symmetric

Multiprocessors (SMPs), clusters, and individual computers.

Peer-to-peer (P2P) networks and grids are distributed computing models that enable decentralized

collaboration by integrating computers into networks in which each can consume and offer services. P2P

is a class of self-organizing system or application that takes advantage of available distributed resources. A

grid is a geographically distributed computing platform comprising a set of heterogeneous machines that

users can access through a single interface. Unlike the classic client-server model, in which roles are well

separated, P2P and grid networks can assign each node a client or server role according to the operations

they are to perform on the network, even if some nodes act more as server than as client in current

implementations. Both are concerned with the same general problem, namely, the organization of

resource sharing within virtual communities; both take the same general approach to solving this problem,

namely the creation of overlay structures, but the underlaying organization of this structure greatly differs

amongst these two technologies.

While computing grids have been widely used in computational science, Peer-to-Peer computing has

achieved wide prominence in the context of multimedia file exchange. It uses the computing power at the

edge of a connection rather than within the network. The client/server architecture does not exist in a

peer-to-peer system. Peer nodes act as both clients and servers - their roles are determined by the

characteristics of the tasks and the status of the system. This architecture minimizes the workload per node,

and maximizes the utilization of the overall computing resources among the network. Today, the sheer

numbers of desktop systems make the potential advantages of interoperability between desktops and

servers into a single Grid system quite compelling. However, these commodity systems have significantly

different properties than the conventional server-based grid systems. They are usually highly autonomous

and heterogeneous systems. And their availability varies from time to time.

8

Cloud services are mainly divided into three services delivery models: SaaS (Software as a Service, e.g.

Google Mail), PaaS (Platform as a Service, e.g. Google AppEngine) and IaaS (Infrastructure as a Service, e.g.

Amazon EC2). We normally view cloud computing as providing some mixture of three core types of service:

Infrastructure as a Service (IaaS), typically servers, storage and network devices provided through

virtualization; Platform as a Service (PaaS), used to deploy applications that are provided by the cloud

provider, provider’s partners or the cloud customer; and Software as a Service (SaaS), where software

applications are accessed over the network (usually the internet) as hosted services. But there is always an

intention to develop a better technology. Clouds have evolved as the next-generation platform that

facilitates creation of wide-area on-demand renting of computing or storage services for hosting

application services that experience highly variable workloads and requires high availability and

performance. Interconnecting Cloud computing system components (servers, virtual machines (VMs),

application services) through peer-to-peer routing and information dissemination structure are essential

to avoid the problems of provisioning efficiency bottleneck and single point of failure that are

predominantly associated with traditional centralized or hierarchical approaches. These limitations can be

overcome by connecting Cloud system components using a structured peer-to-peer network model.

Internxt’s mission is to combine P2P and Grid into nonhierarchical decentralized grid system by going

beyond standard P2P. We aim to build P2P Grid network, next generation peer-to-peer platform. It will be

a truly decentralized structured P2P system which does not require central coordination or knowledge. On

top of P2P grid we aim to provide decentralized platform, a combination of IaaS and PaaS with multiple

services that act as building blocks for variety of usages. P2P systems are commonly classified into two

categories: unstructured systems exposing emergent phenomena driven from purely local interactions, and

structured (DHT-based) systems with probabilistic execution guarantees. Internxt will combine both based

on research done in P2P Grid computing.

Node organization
In the P2P community, a fundamental distinction is made among unstructured and structured P2P systems

for resource location. In unstructured P2P systems in principle peers are unaware of the resources that

neighboring peers in the overlay networks maintain. Typically, they resolve search requests by flooding

techniques. Using the network maintenance protocol, a peer discovers new peers in the network by

flooding discovery messages. From the responses, it (randomly) selects certain peers to which direct

network links are established. The property is accounted to the mechanism of how these networks are

being constructed: New nodes preferentially attach to already well-connected ones. Thus, it’s a completely

decentralized but also self-organizing system: From randomized interactions of peers’ global structures

emerge.

In contrast, standard structured P2P systems follow a different approach with respect to network

maintenance. They assign static identifiers to peers and the distributed data structures (e.g., DHTs) are

constructed based on these identifiers by distributed algorithms. As a result, the overlay network structure

is mainly determined by the choice of identifiers and in turn any self-organization of the system is

9

prevented. Load balancing as a resource allocation problem is critical to support high scalability, availability,

accessibility, and throughput. For systems supporting equality-based lookup of data only, the problem of

non-uniform workloads may be circumvented by applying hash functions to the data keys, thus uniformly

distributing workload, both for storage and query answering. In combination with using balanced search

structures, i.e., balanced distributed search trees, this approach leads to uniform load distribution among

the participating peers. However, it is limited if further semantics of the data keys is exploited, for example,

in the simplest case when the ordering of data keys is used to support prefix or range queries. This is critical

for DB-oriented applications.

P2P grid is a peer-to-peer lookup system based on a virtual distributed search tree, similarly structured as

standard distributed hash tables, and which can solve load balancing issues present in traditional

technologies. Each peer holds part of the overall tree. Every participating peer's position is determined by

its path, that is, the binary bit string representing the subset of the tree's overall information that the peer

is responsible for. Query routing approach is as follows: For each bit in its path, a peer stores a reference

to at least one other peer that is responsible for the other side of the binary tree at that level. Thus, if a

peer receives a binary query string it cannot satisfy, it must forward the query to a peer that is “closer” to

the result. The salient feature of P2P Grid, in contrast to other DHT-based P2P systems, is the separation of

concern between peer identifier and peer’s path. In P-Grid peer paths are not determined a priori but are

acquired and changed dynamically through negotiation with other peers as part of the network

maintenance protocol. Thus, P2P Grid’s prefix-routing infrastructure is constructed by means of a

decentralized, self-organizing process in which it adapts to a given distribution of data keys stored by the

peers.

We assume here that grids are sharing environments implemented via the deployment of a persistent,

standards-based service infrastructure that supports the creation of, and resource sharing within,

distributed communities. Resources can be computers, storage space, sensors, software applications, and

data, all connected through the internet and a middleware software layer that provides basic services for

security, monitoring, resource management, and so forth. Because accessing these decentralized resources

means operating in an environment of unstable connectivity and unpredictable IP addresses, P2P design

requirements commonly include independence from DNS and significant or total autonomy from central

servers. Their implementations frequently involve the creation of overlay networks with a structure

independent of that of the underlying internet. We will build upon these and foundations of distributed

computing paradigms to create a decentralized secure and reliable platform. The following graph show an

overview of the technology behind Internxt, which is further discussed in the coming sections.

10

Blockchain Service Provisioning
The process of deploying application services on publicly accessible clouds that expose their capabilities as

a network of virtualized services (hardware, storage, database) is known as Cloud provisioning. The Cloud

provisioning process consists of two key steps. VM Provisioning: this involves the instantiation of one or

more VMs on physical servers hosted within public or private Cloud computing environments. The selection

of a physical server for hosting VMs in a cloud is based on the number of mapping requirements including

available memory, storage space, and proximity of the parent cloud. Application Service Provisioning: the

second step is the mapping and scheduling of requests to the services that are hosted within a VM on a set

of VMs.

We aim to build a Cloud provisioning platform with the following features: On-demand dynamic computing,

pay-per-use, Proximity aware server location. To meet today's requirements, provisioning techniques and

services should be able to: dynamically adapt to performance needs, failure, and leave and join of hardware

and software, including VMs, servers, storage, software, applications, and networks; discover and monitor

state of services in completely decentralized and distributed manner; accomplish coordinated and load-

balanced provisioning of VMs and application services; handle spikes in service demand (workload) through

dynamic scaling in of services from other public clouds; and handle authentication and authorization of

services for users; provisioning users’ access; federated security model.

A fundamental challenge in managing the Cloud provisioning system is to maintain a consistent connectivity

between the components (self-organization). This challenge cannot be overtaken by introducing a central

network model to connect the components, since the information needed for managing the connectivity

and making the decisions is completely decentralized and distributed. Further, centralized network model

does not scale well, lacks fault-tolerance, and requires expensive server hardware infrastructure. System

11

components can leave (VM instance destruction), join (VM creation), and fail (service outage) in a dynamic

fashion; hence it is an impossible task to manage such a network centrally. Therefore, an efficient

decentralized or peer-to-peer solution is mandatory that can gracefully adapt, and scale to the changing

conditions.

In peer-to-peer organization of Cloud provisioning systems both control and decision making are

decentralized by nature and where different system components interact together to adaptively maintain

and achieve a desired system wide behavior. A distributed Cloud provisioning configuration is decentralized

if none of the components in the system are more important than the others, in case that one of the

component fails, then it is neither more nor less harmful to the system than caused by the failure of any

other component in the system. Traditionally, DHTs have been efficient for single-dimensional queries such

as “finding all resources that match the given attribute value”. Since Cloud computing IaaS and PaaS level

services such as servers, VMs, enterprise computers (private cloud resources), storage devices, and

databases are identified by more than one attribute; therefore, a search query for these services is always

multi-dimensional. These search dimensions or attributes can include service type, processor speed,

architecture, installed operating system, available memory, and network bandwidth.

Internxt will be making use of Blockchain technology in different parts throughout its whole environment.

Blockchain will mainly be used as a backbone for all payments throughout Internxt’s network. We will make

use of Ethereum smart contracts and will create Internxt tokens (INXT) based on the ERC20 token standard

due to its robust structure. Smart contracts are instances of code that live inside the Ethereum network,

and it is impossible for anyone to breach or modify them. They are public, and allow transparent payments

and job running. For the standard user, smart contracts remove the need of an additional middle man when

processing payments. We will create an interface that communicates with smart contracts, and fully

automate all the tasks done in our platform like deployment of applications inside the network, or storing

user files. Internxt network’s availability and consistency are of core relevance for the platform. We will

therefore run algorithms for watching over the performance of network hosts. This would allow to users to

increase their rewards with constant performance over time.

Deployment and Configuration Management
Automation plays a vital role in ensuring we can release software repeatedly and reliably. One key goal is

to take repetitive manual processes like build, deployment, regression testing and infrastructure

provisioning, and automate them. This is the part of the system that handles initial distribution of files onto

the Internxt network. After the user has uploaded the files he/she wishes to run or store on our network,

and if the number of tokens connected to his account is enough for the calculated expenses, files are

delivered to the network. All the settings related to site hosting, level of security and additional encryption

and distribution of files are presented to the users, and in depth explained.

We will use Ansible to provide best user experience for configuration management, and application

deployment. In contrast with popular configuration management software — such as Chef, Puppet, and

12

CFEngine — Ansible uses an agentless architecture. With an agent-based architecture, nodes must have a locally

installed daemon that communicates with a controlling machine. With an agentless architecture, nodes are not

required to install and run background daemons to connect with a controlling machine. This type of architecture

reduces the overhead on the network by preventing the nodes from polling the controlling machine. To

orchestrate nodes, Ansible deploys modules to nodes over SSH. Modules are temporarily stored in the nodes

and communicate with the controlling machine through a JSON protocol over the standard output.

Identity and Payment Management
Identity management, also known as identity and access management (IAM) is, in computer security, the

security and business discipline that "enables the right individuals to access the right resources at the right

times and for the right reasons". It addresses the need to ensure appropriate access to resources across

increasingly heterogeneous technology environments and to meet increasingly rigorous compliance

requirements.

This will consist on an application hosted in our network, that allows users to have an overview over the

balance of Internxt tokens, how they spend them (in terms of the content that is hosted on the Internxt

network), and how much profit they are making from the resources they provide. This includes a full-

fledged web and mobile apps that user can use to manage his own content. Communication between user

client and the server will be encrypted. The server will then communicate with the blockchain and if the

payment is successful, deployment and configuration management parts of the system are contacted.

Automation and User-friendliness are key for our network. The User will be able to pay for what he/she

uses, and earn tokens for the resources he/she provides through our platform, and all of that secured by

13

the Ethereum backbone network. Not only that Ethereum is a great solution today, it is also in constant

improvement and as it evolves, so will our platform grow as well, and this will allow us to add new features

in the close future.

Container Application Platform
Application containerization is an operating system level (OS-level) virtualization method for deploying and

running distributed applications without launching an entire virtual machine (VM) for each app. Instead,

multiple isolated systems are run on a single control host and access a single kernel. The application

containers hold the components such as files, environment variables and libraries necessary to run the

desired software. Because resources are shared in this way, application containers can be created that

place less strain on the overall resources available. This is the layer that allows the regular users to plug in

their personal computers, or dedicated machines into Internxt. For this we plan to use OpenShift, that

provides enterprise Kubernetes for developers. OpenShift Origin is a distribution of Kubernetes optimized

for continuous application development and multi-tenant deployment. OpenShift adds developer and

operations-centric tools on top of Kubernetes to enable rapid application development, easy deployment

and scaling, and long-term lifecycle maintenance for small and large teams. We plan to use this for easy

distribution of Docker images to user machines, that will allow all the users to work with our system with

ease. OpenShift allows a huge specter of tech to be run out of the box, including: Java (Wildfly, JBossEAP,

Tomcat), PHP, Node.js, Python, Perl, MySQL, PostgreSQL, MongoDB, Jenkins, Cron, and JBoss xPaaS Services

(Fuse, BPM Suite, BRMS, Data Virtualization, Aerogear, and more). We plan to extend on their framework,

and if needed adapt it to our needs. This will represent the backbone of our system that connects all the

other parts: it will be used for deployment and provisioning of all the resources inside the network. It allows

all the computers inside the network to be able to run as one, and create the Internxt as we imagine it. We

will also provide an developer API that will allow users to connect to the network, and use it instead of

others existing cloud solutions. The API will be created so that there is no danger of running malicious code

or harming the network in any way. We find OpenShift superior solution compared to similar solutions like

Cocaine. OpenShift runs and supports both stateful and stateless applications. This allows you to take full

advantage of containers without needing to completely re architect your enterprise apps.

Distributed Cache
In computing, a distributed cache is an extension of the traditional concept of cache used in a single locale.

A distributed cache may span multiple servers so that it can grow and in transactional capacity. It is mainly

used to store application data residing in database and web session data. Distributed caches, although

deployed on a cluster of multiple nodes, offer a single logical view (and state) of the cache. In most cases,

an object stored in a distributed cache cluster will reside on a single node in a distributed cache cluster. By

means of a hashing algorithm, the cache engine can always determine on which node a key-value resides.

Since there is always a single state of the cache cluster, it is never inconsistent. The idea of distributed

caching has become feasible now because main memory has become very cheap and network cards have

become very fast, with 1 Gbit now standard everywhere and 10 Gbit gaining traction. Also, a distributed

14

cache works well on lower cost machines usually employed for web servers as opposed to database servers

which require expensive hardware. We want to provide this, since we think it is a feature that is perfectly

fit into the architecture of our system, and brings a lot of benefits in terms of speed and network reliability.

A cache provides high throughput, low-latency access to commonly accessed application data, by storing

the data in memory. For a cloud app, the most useful type of cache is distributed cache, which means the

data is not stored on the individual web server's memory but on other cloud resources, and the cached

data is made available to all an application's web servers (or other cloud VMs that are used by the

application). Since the concept of a “server” is different for us, and we have a lot of memory available in

the network, it is easy to make use of, and deliver content with high speeds, regardless of scaling of

applications on a high number of places. A distributed cache runs as an independent process across multiple

nodes and therefore failure of a single node does not result in a complete failure of the cache. Because of

a node failure, items that are no longer cached will make their way into surviving nodes on the next cache

miss. Also in the case of distributed caches, the worst consequence of a complete cache failure should be

degraded performance of the application as opposed to complete system failure.

Decentralized Serverless Computing
Serverless computing is a cloud computing execution model in which the cloud provider dynamically

manages the allocation of machine resources. Pricing is based on the actual amount of resources consumed

by an application, rather than on pre-purchased units of capacity. It is a form of utility computing. Serverless

architectures refers to applications that significantly depend on third-party services (knows as Backend as

a Service or "BaaS") or on custom code that's run in ephemeral containers (Function as a Service or "FaaS"),

the best-known vendor host of which currently is AWS Lambda. Instead of thinking of applications as

collections of servers, developers instead define applications with a set of functions with access to a

common data store. The Lambda model has many benefits as compared to more traditional, server-based

approaches. Lambda handlers from different customers share common pools of servers managed by the

cloud provider, so developers need not worry about server management. The code specific to an

application will typically be small, and hence it is inexpensive to send the handler code to any worker in a

cluster. Finally, applications can scale up rapidly without needing to start new servers. In this manner, the

Lambda model represents the logical conclusion of the evolution of sharing between applications, from

hardware to operating systems to the runtime environments themselves.

15

Again, we consider this to be a perfect fit for the architecture that runs the Internxt network. We will be

making use of Open Lambda, as an open source and reliable project, that allows serverless computing and

is compatible with other technical solutions we already use (eg OpenShift, Docker). Serverless computing

is used more, and it represents the future of applications. With Serverless computing and Internxt network

it is easy to detect and scale the needs for resources needed for application to run. We allow users to host

their services on our platform, with easy integration to any existing application through standard REST

interface. Additional benefit is ease of payment for the user - like for everything else in our system, it is

done by smart contracts that monitor the usage of resources. By writing good code, this would allow the

publishers to get an incredible scaling, at low prices.

Decentralized Content Delivery Network
Due to increase in internet usage nowadays users are accessing information from all part of the world so

we need to have an effective content delivery system to deliver content in a fast and effective way. The

problem of existing content distribution to users is by delivering the data through single transmission from

source to one point (cache server in that branch) and the copies are created at that branch point and

distributed to each requested user node. We have many existing content delivery networks which delivers

content quickly and effectively by responding to the user request from the nearest geo location cache

server. But enabling a decentralized content caching capability removes the need of central cache server

and increases the performance, data availability and speed of content delivery process. Here content is

cached in mostly every intermediate node within the network and content is fetched by its content name

not based on the hostname. Requested content is delivered to the node from the nearest node holding the

content cache, in case if that node is unavailable the request is shifted to the next nearest node holding

the content. Content delivery networks (CDN) is a cache based technique which stores a data in cache

server place at different locations. When a user request for a specific data from the server, the nearest CDN

will respond with data to the user’s request. Peer-to-Peer (P2P) system also use a caching technique but

here the participant node who are all accessing the data will become a cache server and respond to other

users. P2P data is stored in one user’s node is made available to another user. So, the distribution load is

shared among users instead of central serve. Even if the user is respond by the CDN having single cache

16

server for one nation or one zone can’t be the solution. In Peer-to-Peer the data requested is fetched from

another participant who is requesting the same data from the server.

Decentralized DNS
DNS (Domain name service) is used to resolve human readable addresses - like internxt.io, into a series of

numbers, that are machine readable, but hard for users to memorize. DNS allows users to browse the

internet with ease, and most of the users don’t even think about it. Communication between user and DNS

server is done in multiple steps, and it only takes a few milliseconds to complete. But, while DNS is a very

good and well technical solution, it has its flaws. DNS is by default decentralized, and it is very massive set

of supercomputers running behind it. But on top level, it is centralized, and this has a lot of flaws users

usually don’t think of. DNS allows for hacker attacks to be conducted on massive number of users. It allows

also for someone who controls it, to censor the internet in the way he likes. Many countries around the

world censor the internet already, and since day by day internet is more widely used, the need for this will

only grow bigger, by big organizations and governments. This is where a truly decentralized DNS would set

in place, and bring its many benefits onto the table. The main benefit is that decentralized DNS would allow

zero down times while at the same time making censoring of content impossible.

Our nodes will feature a mapping layer that will be self-organizing. These mapping nodes could be HTTP

ingress proxies that route client requests from a given locale to the appropriate data centers, the model

adopted by Google and Yahoo. Or the mapping nodes could be authoritative DNS servers that resolve local

queries for the names of Web sites, the model adopted by Akamai and most CDNs. Furthermore, these

DNS servers may use IP anycast to leverage BGP-based failover and to minimize client request latency.

Whatever the mechanism for interacting with clients, each mapping nodes has only a partial view of the

global space of clients. Node will be developed based on research in decentralized server selection.

Decentralized Service Discovery
Service-Oriented Computing (SOC) is emerging as a paradigm for developing distributed applications. A

critical issue of utilizing SOC is to have a scalable, reliable, and robust service discovery mechanism, that

would work perfect in combination with likes of network like Internxt, with a lot of nodes in form of user

computers. This will allow for new services that enter network to be discovered the moment they are

available to use. Since it is all decentralized, there is no need for update of some central table that everyone

reads from, and makes updates visible to users in an instant. However, traditional service discovery

methods using centralized registries can easily suffer from problems such as performance bottleneck and

vulnerability to failures in large scalable service networks, thus functioning abnormally.

A weak point of web services is the lack of suitable technologies for implementing service registries.

Universal Description, Discovery and Integration (UDDI), as a centralized approach, conflicts with the

distributed nature of service-oriented architectures and did not prevail in practice. Internxt novel service

17

discovery scheme is scalable. Each service provider runs one or more discovery proxies in its internet

domain and sets DNS records pointing to them. Then, local services can register at these proxies. Service

users from the local network as well as from the internet can now locate these proxies using the DNS and

query them for available services in this domain. Thus, the local proxies are linked together by the DNS

forming one coherent global service directory.

Centralized approaches to service discovery, monitoring, and load balancing have several critical design

limitations including: single point of failure; lack scalability; high network communication cost (such as

network bottleneck, congestion) at links leading to the service; requirement of high computational power

(which may be not feasible with commodity machines that public clouds offer) to serve a large number of

resource look-up and updated queries on the server running the central service.

Decentralized service discovery is considered as a promising approach to addressing the problems caused

by centralized infrastructures. Internxt is solving this, allowing extremely high scalability, data availability

and quality of service aware discovery. As new nodes are added to the network, it allows us to scale the

services better, and have shortened waiting times when loading content. This allows the user to always

download content from the closest node. In perfect scenario, if the user is to have someone in the same

local network with him already serving the content, it can be downloaded using local network, and allow

the content to be shown instantly, saving on DNS and file download times. Otherwise, the closest and most

performant node is selected, and the content is served from there. Performance of node and delivery is

calculated based on node load, network speed, latency and other factors that may decrease the overall

experience.

Gossip-Style Failure Detection
When building a system on top of a set of wildly uncooperative and unruly computers you have knowledge

problems: knowing when other nodes are dead; knowing when nodes become alive; getting information

about other nodes so you can make local decisions, like knowing which node should handle a request based

on a scheme for assigning nodes to a certain range of users; learning about new configuration data;

agreeing on data values; Failure Detection is valuable for system management, replication, load balancing,

and other distributed services. To date, Failure Detection Services scale badly in the number of members

that are being monitored.

A gossip protocol is a style of computer-to-computer communication protocol inspired by the form of

gossip seen in social networks. Modern distributed systems often use gossip protocols to solve problems

that might be difficult to solve in other ways, either because the underlying network has an inconvenient

structure, is extremely large, or because gossip solutions are the most efficient ones available. Since this is

a key point in scaling networks with high number of nodes, like ours is, we will implement algorithms that

prevent content from being unavailable at any moment. The protocol here needs to take into consideration

many negative effects, like power outage, internet failing to deliver messages between nodes, etc. We

would have this running on each separate node, and on federated nodes, also run by users. Such nodes

18

would need more processing, storage, and network power, and would logically be rewarded with higher

number of tokens for their work. Our solution will be based on scientific research and current proven open

source solutions.

Decentralized Network Coordinate System
Network tomography is the study of a network's internal characteristics using information derived from

end data. Network tomography advocates that it is possible to map the path data takes through the internet

by examining information from "edge nodes," the computers in which the data are originated and from

which they are requested.

Network coordinates (NC) system is an efficient mechanism for internet distance prediction with limited

measurements. The goal of these systems is mainly to develop public infrastructure that provides distance

information between any two arbitrary points on the internet. The ability to predict latency without prior

communication allows systems to use proximity for better performance with less measurement overhead.

A coordinate system could be used to select which of several replicated servers to fetch a data item from;

such a system is particularly helpful when the number of potential servers is large or the amount of data is

small. While Vivaldi is a representative NC, our solution will be based on research done in Pharos and

PCoord papers. Pharos is a fully decentralized NC system. All nodes in Pharos form two levels of overlays,

namely base overlay for long link prediction, and local cluster overlay for short link prediction. Vivaldi

algorithm is applied to both base overlay and local cluster. As a result, each Pharos node has two sets of

coordinates. PCoord is a fully decentralized network coordinate system with each host updating its

coordinate iteratively to refine the prediction accuracy of its estimated position. Each host updates its

coordinates to minimize a loss function that measures the difference between the actual and the geometric

distances between itself and a small set of other hosts. PCoord does not require any special bootstrap

process - each node goes through an iterative calibration process to refine its coordinates. Evaluation of

performance done in both papers clearly shows benefits over Vivaldi and with that reason it will be basis

of our implementation.

Node Reputation and Security System
The significance of efficient security mechanisms in P2P and Grid systems is unquestionable, since security

is a quality of service factor for such systems. Traditional security mechanisms like encryption and sand-

boxing incur additional overhead. By using trust and reputation, the additional overhead is minimized. Trust

mechanisms result in safer communication between P2P and Grid nodes, increasing the quality of service

and making P2P and Grid technology more appealing.

Due to the openness of distributed networks, security issue becomes one of the most important challenges

when deploying these networks into application. Traditional strategies, such as traditional encryption and

access control, because of their poor scalability, are no longer suited for resolving security issues of

distributed P2P system. Trust management resolves the security issues in semantic and behavioral levels

19

and filters malicious nodes based on their real-time behaviors between transactions. Trust mechanism can

transfer between heterogeneous mixed networks seamlessly, and the researches of trust management are

of considerable interest in recent years. P2P grid computing combines and integrates grid and P2P

technologies to implement peer-to-peer communications with greater distribution and scalability. Trust

management is a complicated and difficult task in such an environment, because resources are

geographically distributed and belong to distinct organizations. In a P2P environment, some peers may

provide services with low quality and may not promise to satisfy user requirements. An unfavorable

situation arises when providers offer incorrect information about their resources/services to exaggerate

the quality of their services. To inspire resource sharing among nodes and protect against malicious node

behaviors, a reputation system for trust management is necessary. Peer-to-Peer (P2P) reputation systems

are essential to evaluate the trustworthiness of participating peers and to combat the selfish, dishonest,

and malicious peer behaviors.

Our solution will be based on recent advances in trusted grids and P2P computing systems. PowerTrust

paper will be basis for our solution. In comparison with two established P2P reputation systems, EigenTrust

and PeerTrust, we believe PowerTrust is more robust and scalable. Inspired by the power-law findings in

peer feedbacks, the PowerTrust system dynamically selects a few power nodes that are most reputable by

using a distributed ranking mechanism. The good reputation of power nodes is accumulated from the

running history of the system. Like a democratic system, power nodes are dynamically replaceable, if they

become less active or demonstrate unacceptable behavior.

20

Market position
We are providing a completely revolutionary technology that outperforms the current solutions in the

market. As it has already been mentioned, our main competitive competences are privacy, security and

efficiency, providing a price at least as good as the one traditional solutions provide. We also want to

provide a user experience at least as good as the ones they offer. There already exist a few direct

competitors to Internxt though, which provide a decentralized cloud solution that aims to improve the way

the internet is organize. Although there are not many competitors, their decentralized technologies are

sometimes outstanding. Even though this is the case, these competitors have not yet become mainstream.

We believe that the main issue resides in user experience. The reality is that, although decentralized and

blockchain technology is better than the traditional technology we use, it is too complex for the average

user to make a transition from one technology to the other. We are putting the focus on providing an

outstanding user interface, that’s as easy to use as the current solutions offered by big corporations. By

providing a competitive price and a seamless user experience, we believe we can become mainstream with

our decentralized technology, which in some cases does not have to be better than the one offered by our

direct competitors.

21

Token

Initial Coin Offering
The goal of the ICO is to allow users to participate in the development of our platform. The minimum goal

in EUR for the project is 500ETH, and the cap is set at 150,000ETH. With maximum founding, we would be

able to develop the complete environment we had envisioned. With the minimum raised cap of 500ETH

we would be able to develop a basic version of our decentralized file storage technology (dCDN). If we fail

to raise the minimum cap, although we will still try to develop our technology, users will have the chance

to request a refund of their ETH (ETH gas will be subtracted during the refund process) during a period of

2 weeks from the time at which the ICO ends. The ICO will last for 3 weeks, starting on September 7th. First

15% INXT sold will give 10% bonus tokens, or 15% bonus for those who purchase over €30k worth of tokens.

Second 15% set of tokens (so up to 30%) will give a 5% bonus or a 10% for those who purchase over €30k

worth of tokens. INXT will be used as a payment method for the services provided in our network. The

tokens will be issued according to ERC20 Ethereum standard. In depth guides for buying tokens during ICO,

and later exchange of ICO tokens to regular ones, are available on our website, and for any help needed

there will be live support during the ICO, and before it starts, though our slack channel. Minimum and

maximum amounts of tokens that are sold in the ICO sale can be seen in the table below. For each ETH

collected, there will be 300 INXT tokens generated. The number of tokens created for Internxt’s developers

and the company is fixed in percentage, and the amount is calculated based on the total tokens created

during the ICO sale. These tokens will mainly be used to test the current technology internally. Tokens

generated for the team will be “frozen” for 6 months after the ICO sale, since we consider that will be the

period that will be needed for the initial technology to be developed and to start getting tested. Internxt is

a legal entity registered in Spain as Internxt Universal Technologies SLU. Internxt Tokens (INXT) are not

securities -investment contracts. We have designed these with the objective of fundraising the

development of our technology, and once this is ready, those who purchased the tokens will be able to

trade them for our service. Although it can happen, INXT are not designed to help those who purchase

them to make a profit by selling the tokens.

Tokens issued per ETH 300

Minimum ether to collect 500 ETH

Maximum ether to collect 150,000 ETH

Tokens generated for Internxt’s team 2.5% of total sold tokens after the ICO

Tokens generated for Internxt 5% of total sold tokens after the ICO

22

Date and Time of start September 7th 2017, 07.00PM GMT

End Date and Time September 28th 2017, 07.00PM GMT

Maximum tokens sold during ICO 45,000,000

Maximum tokens for the team, company and

bounty program (770,000INXT dedicated to

bounty program)

4,145,000

Maximum tokens generated (not including

bonus tokens, which are variable)

49,145,000

The total amount of circulating tokens = Tokens sold during ICO + Bounty + Bonus + 7.5% of tokens sold

during ICO for the company and development

Post ICO budget allocation
Based on the amount of money collected during the ICO, we will be able to develop a bigger or smaller

number of features for our technology. If we do not raise the required amount to build all the features we

aim to develop, we will create a functional, less complete technology up to the extent that we are able to.

Maximum financing scenario would allow us to follow the delivery process without running into insufficient

budget. The biggest part of the budget will go into the actual development of the project, with other

expenses such as marketing and taxes. We want to go into the market as fast as possible, and expand the

value of the tokens for everyone holding these, by giving an actual value to the product. Once the ICO takes

place, we will start working in the development of the technology and expect a stable version our

technology to be readily available by the end of 2018.

References
Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan

Swinehart, Doug Terry, Epidemic algorithms for replicated database maintenance, 1987

23

Brijender Kahanwal, Tejinder Pal Singh, The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud,

and Jungle, International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299

Vol.1, Issue 2 :Page No.183-187, July-August(2012)

Domenico Talia and Paolo Trunfio, Toward a Synergy Between P2P and Grids

Handbook of Research on P2P and Grid Systems for Service-Oriented Computing: Models, Methodologies

and Applications, Nick Antonopoulos (University of Derby, UK)

Ian Foster, Adriana Iamnitchi, On Death, Taxes, and the Convergence of Peer-to-Peer and Grid

Computing, International Workshop on Peer-to-Peer Systems IPTPS 2003: Peer-to-Peer Systems II pp 118-

128

Jingpei Wang and Jie Liu, The Comparison of Distributed P2P Trust Models Based on Quantitative

Parameters in the File Downloading Scenarios, 2016

Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred Hauswirth,

Magdalena Punceva, Roman Schmidt, P-Grid: A Self-organizing Structured P2P System

Li-wei H. Lehman, PCoord: A Decentralized Network Coordinate System for internet Distance Prediction

Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, Julian Satran, Object Storage: The Future Building

Block for Storage Systems, IBM Haifa Research Laboratories

Nilton Bila, Paolo Dettori, Ali Kanso, Yuji Watanabe, Alaa Youssef, Leveraging the Serverless Architecture

for Securing Linux Containers

Qiang He, Jun Yan, Yun Yang, Ryszard Kowalczyk, Hai Jin, A decentralized service discovery approach on

peer-to-peer network, 2013

Rajiv Ranjan, Liang Zhao, Xiaomin Wu, and Anna Liu, Peer-to-Peer Cloud Provisioning: Service Discovery

and Load-Balancing, 2010

Red Hat, Ansible in depth

Red Hat, The Benefits of Agentless Architecture, Ansible

Robbert van Renesse, Yaron Minsky, and Mark Hayden, A Gossip-Style Failure Detection Service

Runfang Zhou, Member, IEEE, and Kai Hwang, PowerTrust: A Robust and Scalable Reputation System for

Trusted Peer-to-Peer Computing

24

Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, Robert Morris, Practical, Distributed Network

Coordinates

Saeed Javanmardia, Mohammad Shojafar, Shahdad Shariatmadari and Sima S. Ahrabi, FR TRUST: A Fuzzy

Reputation Based Model for Trust Management in Semantic P2P Grids

Sergio Marti, Trust and reputation in Peer-to-Peer networks, Stanford university Phd dissertation, 2005.

Sitaram Iyer, Antony Rowstron, Peter Druschel, Squirrel: A decentralized peer-to-peer web cache, 2002

V.Deepika , G. Mohana Priya , R.Gayathri , A.Chitra, An Efficient Content Delivery Scheme Using a

Decentralized Content Caching, 2017

World Wide Technology Inc, Issues in Cloud Security, 2016.

Yang Chen, Yongqiang Xiong, Xiaohui Shi, Beixing Deng, Xing Li, Pharos: A Decentralized and Hierarchical

Network Coordinate System for internet Distance Prediction

